

Week 01

Introduction – The hard sphere model

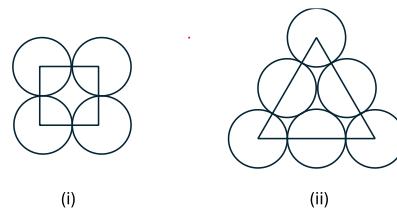
Exercise 1 :

Answer these questions by true or false:

	True	False
1. Materials in nature are always in a crystalline state.	<input type="checkbox"/>	<input type="checkbox"/>
2. Metals tend to crystallize into dense structures.	<input type="checkbox"/>	<input type="checkbox"/>
3. The packing parameter depends on the nature of the crystal structure, and not on the nature of the material.	<input type="checkbox"/>	<input type="checkbox"/>

Exercise 2 : 2D packing parameters

We consider the following 2D figures where circles of radius R are placed at the corners of a square of edge length a in configuration (i), and the vertices (or corners) of an equilateral triangle of edge length b in configuration (ii).

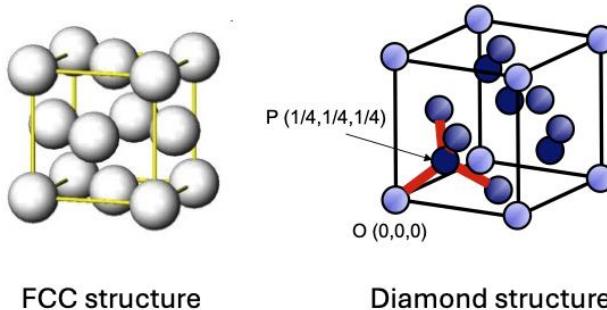


- 2a. Find a relationship between a and b .
- 2b. In configurations (i):
 - (1) what is the total surface area $S_{circles}$ of the square covered by the circles, as a function of a ?
 - (2) Deduce the 2D packing density.
- 2c. In configurations (ii):
 - (1) what is the total surface area $S_{circles}$ of the triangle covered by the circles, as a function of a ?
 - (2) Deduce the 2D packing density.

Exercise 3 : From the FCC to the Diamond structure

The face-centered cubic (FCC) structure, in the case of 1 atom per motif, has atoms that sit at the corner of a cube and at the center of its faces (see figure below). We consider the hard sphere model where atoms are represented by spheres of radius R . The edge of the cube has a length a .

- 3a. Knowing that the spheres are in contact along the diagonals of the cube's faces, show that the relationship between a and R is given by: $a\sqrt{2} = 4R$
- 3b. Deduce the volume of one sphere as a function of a .
- 3c. How much volume of spheres can we count inside the cube ?
- 3d. Deduce the packing factor of the FCC structure. Does it depend on a ?



FCC structure

Diamond structure

The diamond structure shown above consists of tetrahedra of carbon atoms arranged in space to form the crystal. This arrangement turns out to be represented by a motif of two carbon atoms translated in the face-centered cubic structure. In the motif, one atom has its center at one corner of the cube that could be an origin $O (0,0,0)$, and the other one is shifted along the diagonal at position $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4})$. The two spheres representing the two atoms are in contact with each other (to the contrary of what is shown on the schematic for clarity).

- 3e.
 - (1) Show that the length of the diagonal of a cube of edge length a is $a\sqrt{3}$.
 - (2) What is the number of closest neighbors ?
 - (3) Deduce the relation between R and a in this case.
- 3f. How much volume of spheres can we count inside the cube for the Diamond structure?
- 3g. Deduce the packing fraction of the Diamond structure.
- 3h. Why is it so much smaller than the packing fraction of the FCC structure ?